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Distress Syndrome Patients Using 
Machine Learning: The Predicting Outcome 
and STratifiCation of severity in ARDS 
(POSTCARDS) Study*
OBJECTIVES: To assess the value of machine learning approaches in the devel-
opment of a multivariable model for early prediction of ICU death in patients with 
acute respiratory distress syndrome (ARDS).

DESIGN: A development, testing, and external validation study using clinical data 
from four prospective, multicenter, observational cohorts.

SETTING: A network of multidisciplinary ICUs.

PATIENTS: A total of 1,303 patients with moderate-to-severe ARDS managed 
with lung-protective ventilation.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We developed and tested predic-
tion models in 1,000 ARDS patients. We performed logistic regression analysis 
following variable selection by a genetic algorithm, random forest and extreme 
gradient boosting machine learning techniques. Potential predictors included 
demographics, comorbidities, ventilatory and oxygenation descriptors, and extra-
pulmonary organ failures. Risk modeling identified some major prognostic factors 
for ICU mortality, including age, cancer, immunosuppression, Pao2/Fio2, inspir-
atory plateau pressure, and number of extrapulmonary organ failures. Together, 
these characteristics contained most of the prognostic information in the first 24 
hours to predict ICU mortality. Performance with machine learning methods was 
similar to logistic regression (area under the receiver operating characteristic 
curve [AUC], 0.87; 95% CI, 0.82–0.91). External validation in an independent 
cohort of 303 ARDS patients confirmed that the performance of the model was 
similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87–0.94).

CONCLUSIONS: Both machine learning and traditional methods lead to prom-
ising models to predict ICU death in moderate/severe ARDS patients. More re-
search is needed to identify markers for severity beyond clinical determinants, 
such as demographics, comorbidities, lung mechanics, oxygenation, and extrapul-
monary organ failure to guide patient management.

KEY WORDS: acute respiratory distress syndrome; clinical trials; ICU mortality; 
lung-protective ventilation; machine learning; observational studies; stratification.

The acute respiratory distress syndrome (ARDS) is a severe form of acute 
hypoxemic respiratory failure associated with high morbidity and mor-
tality (1). The ability to accurately predict mortality of ARDS patients’ 

remains challenging despite an array of existing prediction models which 
combine multiple variables thought to influence prognosis (2–4). A reliable 
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prediction tool for assessment of outcome in the ICU 
may prove beneficial for decision-making in these 
patients.

Despite advances in the management of ARDS 
patients over the past 2 decades (5–9) reported mortality 
rates (at ICU and hospital discharge) in observational 
studies are between 35% and 45%. Predicting ARDS 
outcome could inform clinicians’ decision-making by 
targeting specific therapeutic interventions to enhance 
organ recovery, reduce iatrogenic harm, and increase 
survival. ARDS outcome is influenced by a broad spec-
trum of clinical factors dependent and independent of 
pulmonary function (1). Identifying key clinical vari-
ables, which are associated with mortality in ARDS, 
might suggest therapeutic alternatives to lower the 
high fatality rate of ARDS.

Since its initial clinical description, the management 
of ARDS has understandably evolved (2, 10). Few 
studies have investigated the prediction of ICU mor-
tality in ARDS patients in the era of lung-protective 
mechanical ventilation (MV) using the current ARDS 
definition (11). Recently developed prediction models 
interpretable at the bedside combine clinically relevant 
variables derived from a population that represents 
the type of patients seen in clinical practice. Machine 
learning (ML) approaches hold promise to capture 
the complex interactions among these variables (12, 
13) and, in recent years, have been used for predicting 

mortality in critically ill patients, including those with 
ARDS (14–16).

Using a large number of patients with moderate-to-
severe ARDS admitted to a network of ICUs from sev-
eral geographical areas of Spain, we aimed to assess the 
value of ML techniques to predict ICU mortality using 
variables collected within the first 24 hours of diag-
nosis of moderate-to-severe ARDS. We compared the 
prognostic abilities of ML and logistic regression mod-
els with each other, and with our previously described 
Stratification for identification of Prognostic catego-
ries In acute RESpiratory distress syndrome (SPIRES) 
score (4).

METHODS

This study was approved by the Ethics Committee for 
Clinical Research at Hospital Universitario Dr. Negrín 
(Las Palmas de Gran Canaria, Spain). The need for 
informed consent was waived based on Spanish leg-
islation for biomedical research (CEI/CEIm No. 2021-
321-1) under the Royal Decree 1090/2015 December 
2015 and Royal Decree 957/2020 November 2020, due 
to the retrospective nature of this secondary analysis, 
the anonymization/dissociation of data, and no poten-
tial harm or benefit to patients (Supplemental File, 
http://links.lww.com/CCM/H413). The study followed 
the Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis 
guidelines for prediction models (17).

Patient Population

This study is an extension of the Spanish Initiative for 
Epidemiology, Stratification and Therapies of Acute 
Respiratory Distress Syndrome program (3, 18–20) 
(Supplemental File, http://links.lww.com/CCM/H413). 
We performed a comprehensive analysis, termed the 
Predicting Outcome and STratifiCation of severity in 
ARDS (POSTCARDS) study, of an unrestricted set of 
data derived from 1,303 adult (≥ 18 yr old) patients 
with moderate-to-severe ARDS (11) treated with lung-
protective MV in a network of ICUs from several ge-
ographical areas of Spain (Supplemental File, http://
links.lww.com/CCM/H413).

The study was conducted in four steps. In the first 
two steps (model development and testing), we ana-
lyzed data derived from 1,000 patients included in three 
independent, prospective, multicenter, observational 

 
KEY POINTS

Purpose: To develop and validate an early predic-
tion model for ICU death in patients with moder-
ate-to-severe acute respiratory distress syndrome 
(ARDS) using machine learning.

Findings: Both machine learning and traditional 
methods were effective in predicting patients likely 
to die in the ICU.

Meanings: Major prognostic factors for ICU 
mortality in patients with moderate/severe ARDS 
patients include plateau pressure, oxygenation, 
age, number of extrapulmonary organ failures, 
cancer, and immunosuppression. We identified 
a seven-variable prediction model that might im-
prove prediction beyond models currently avail-
able to help guide therapeutic choices.
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cohorts enrolling consecutive patients meeting cur-
rent criteria for moderate-to-severe ARDS (11). In the 
third step, we tested the performance of the model in 
an independent cohort of 303 patients with moderate/
severe ARDS included in the multicenter observational 
Prevalence and outcome of acute hypoxemic respi-
ratory failure (PANDORA) study (20) with sufficient 
number of events (ICU deaths) required for reliable 
external validation (21, 22) (Supplemental File, http://
links.lww.com/CCM/H413). Finally, we compared the 
predictive performance of the different models with 
the previously reported SPIRES score (4).

Variables, Primary Outcome, and Predefined 
Rules

To build the models, we used variables, including 
demographics, comorbidities, cause of ARDS, Acute 
Physiology and Chronic Health Evaluation II score (23) 
during the first 24 hours of ARDS diagnosis, data from 
ventilator settings and lung mechanics (tidal volume 
[Vt], respiratory rate [RR], positive end-expiratory 
pressure [PEEP], plateau pressure [Pplat]), and gas ex-
change ([Pao2, Paco2, Fio2, Pao2/Fio2, pH]) at the time 
of diagnosis of moderate/severe ARDS and 24 hours 
later. For the purpose of this study, values of Pao2/Fio2 
and Pplat at 24 hours were assessed under standardized 
ventilatory settings (PEEP = 10 cm H2O and Fio2 = 0.5) 
(24). When patients required PEEP greater than 10 or 
Fio2 greater than 0.5 and could not tolerate a decrease 
in PEEP or Fio2, a set of rules for setting PEEP and Fio2 
were applied only during the standardized assessment, 
as described and validated previously by our group (3, 
24). At other times, PEEP and Fio2 levels were set at 
the discretion of managing clinicians. We recorded the 
Sequential Organ Failure Assessment (SOFA) score (25) 
and occurrence of extrapulmonary organ failures (OFs) 
included in the SOFA scale at diagnosis of moderate-to-
severe ARDS and 24 hours later. We recorded date and 
status (alive or dead) of patients at ICU and hospital dis-
charge. Primary outcome was all-cause ICU mortality.

Although we collected data from 165 variables in 
each patient during ICU stay, feature selection is of 
vital importance in building a prediction model that 
is easily actionable and interpretable in clinical daily 
practice. Based on previous work by our group (26, 
27), we focused our analysis on variables collected 
within the first 24 hours of diagnosis of moderate/

severe ARDS to estimate the early probability of ICU 
death, independent of the underlying disease or cause 
of death (Fig. S1, http://links.lww.com/CCM/H413). 
Our aim for variable selection was to incorporate clini-
cally relevant variables while avoiding noise/redundant 
variables. We analyzed the following variables as po-
tential predictors of ICU outcome: age, gender, comor-
bidities, SOFA score, number of extrapulmonary OF, 
Pao2, Pao2/Fio2, Paco2, pH, Fio2, Vt, RR, PEEP, Pplat, 
driving pressure (calculated as Pplat minus PEEP), 
and minute ventilation, at the time of moderate/severe 
ARDS diagnosis and 24 hours later (Tables S1 and 
S2, http://links.lww.com/CCM/H413). We prespeci-
fied the analysis before final statistical analyses were 
conducted (Supplemental File, http://links.lww.com/
CCM/H413).

Statistical Analysis

We performed descriptive statistical analyses to an-
alyze patients until ICU discharge. We performed 
univariable analysis to predict ICU outcome. We iden-
tified potential variables that could be included in the 
prediction model based on our predefined rules, their 
contribution to the area under the receiver operating 
characteristic curve (AUC), and their p values. Since 
the inclusion of all available variables in ML practice 
can lead to complex models that are difficult to inter-
pret, we screened the collected variables employing a 
genetic algorithm variable selection method (28) to 
achieve parsimony and to identify a subset of relevant 
variables (subset selection) for an accurate prediction 
model, while excluding noise/redundant variables. We 
decided to use genetic algorithm for variable selection 
since it demonstrated better performance than other 
advanced variable selection methods in large ICU 
datasets and due to our previous successful experience 
(29). We applied the genetic algorithm to optimize the 
subset of selected variables by minimizing the Akaike 
information criterion (AIC) and the Bayesian informa-
tion criterion (BIC) (30). We calculated the variance 
inflation factor, a measure of multicollinearity in re-
gression logistic analysis. Multicollinearity exists when 
there is a correlation between multiple independent 
variables in a multiple regression model. A two-sided 
p value of less than 0.005 was considered for identifi-
cation of important prognostic variables, to keep the 
false discovery rate below 5% (31).
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We built the POSTCARDS prediction model by con-
sidering the minimum number of variables obtained by a 
genetic algorithm that provided a similar performance as 
all variables prediction model. We used a five-fold cross-
validation for splitting randomly the 1,000-patient dataset 
as 800 patients for training and 200 patients for validating 
and repeating this process 100 times (Supplemental File, 
http://links.lww.com/CCM/H413). We evaluated the 
final minimum number of variables model using two ML 
approaches: random forest (RF) and extreme gradient 
boosting (XGBoost) (32, 33) (Supplemental File, http://
links.lww.com/CCM/H413). Calculations were per-
formed using the R Core Team 2022 software (R Version 
4.2.2) (https://www.r-project.org) (R Foundation for 
Statistical Computing, Vienna, Austria), package “ran-
domForest” and “xgboost” (34, 35).

We also examined whether the ML models provided 
an improvement in the prediction of ICU mortality 
when compared with the SPIRES score that we previ-
ously reported (4). We calculated measures to assess 
the validation of the prediction models, related to cal-
ibration and discrimination, by studying the external 
validity of the models developed in 1,000 patients and 
tested in 303 patients (36, 37) (detailed in Supplemental 
File, http://links.lww.com/CCM/H413).

Figure 1 summarizes the study design.

RESULTS

From the 1,000 patients used for model development, 
375 patients died (37.5%) in ICU (Table 1). We ana-
lyzed 34 clinically relevant variables collected within 

Figure 1. Diagram representing the study design. The flowchart illustrates the scheme for the database with 1,303 patients with 
moderate/severe acute respiratory distress syndrome (ARDS), selection of variables for final analysis, machine learning approaches, 
and comparisons among the prediction models. Once most relevant variables were selected by a genetic algorithm (GA) in the dataset 
of 1,000 patients, this dataset was divided into five folders to perform five-fold randomized cross-validation repeated 100 times using 
machine learning. AIC = Akaike information criterion, BIC = Bayesian information criterion, RF = random forest, SPIRES = a four-
variable score as an acronym for ”Stratification for Prognostic categories In the Acute RESpiratory distress syndrome” (see Villar et al 
[4]), XGBoost = extreme gradient boosting.
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TABLE 1.
Baseline Characteristics and Outcome Data of 1,303 Patients With Moderate-to-Severe 
Acute Respiratory Distress Syndrome

Variables 
Development 

Cohort (n = 1,000) 
Testing Cohort 

(n = 303) p 

Age, yr, median (IQR) 57 (46–70) 60 (49–70) 0.157

Gender, n (%)   0.075

 � Male 680 (68.0) 223 (73.6)  

 � Female 320 (32.0) 80 (26.4)  

Etiology, n (%)    

 � Pneumonia 480 (48.0) 110 (36.3)  

 � Sepsis 286 (28.6) 78 (25.7)  

 � Aspiration 94 (9.4) 47 (15.5)  

 � Trauma 74 (7.4) 38 (12.5)  

 � Acute pancreatitis 32 (3.2) 13 (4.3)  

 � Multiple transfusions 10 (1.0) 3 (1.0)  

 � Others 24 (2.4) 14 (4.6)  

Degree of ARDS severity, n (%)   0.088

 � Severe 410 (41.0) 107 (35.3)  

 � Moderate 590 (59.0) 196 (64.7)  

Acute Physiology and Chronic Health Evaluation II score, mean ± sd 20.8 ± 6.7 21.3 ± 7.8 0.382

Sequential Organ Failure Assessment score, mean ± sd 9.25 ± 3.5 9.9 ± 3.6 0.005

Fio2, mean ± sd 0.79 ± 0.19 0.765 ± 0.20 0.050

Pao2, mm Hg, mean ± sd 85.9 ± 26.3 86.3 ± 24.9 0.817

Pao2/Fio2, mm Hg, mean ± sd 114.8 ± 38.3 120.4 ± 41.0 0.029

Paco2, mm Hg, mean ± sd 49.0 ± 12.5 50.6 ± 13.8 0.072

pH, mean ± sd 7.30 ± 0.11 7.29 ± 0.11 0.112

Tidal volume , mL/kg predicted body weight, mean ± sd 6.9 ± 1.1 6.7 ± 1.1 0.006

Respiratory rate, ventilator cycles/min, mean ± sd 21.4 ± 4.9 22.3 ± 4.6 0.005

Minute ventilation, L/min, mean ± sd 9.1 ± 2.2 9.5 ± 2.0 0.005

Positive end-expiratory pressure, cm H2O, mean ± sd 12.1 ± 3.3 11.0 ± 3.0 < 0.001

Plateau pressure, cm H2O, mean ± sd 26.5 ± 4.8 25.2 ± 4.9 < 0.001

Driving pressure, cm H2O, mean ± sd 14.5 ± 4.8 14.3 ± 4.8 0.624

Number of extrapulmonary organ failure, mean ± sd 1.7 ± 1.1 1.9 ± 1.1 0.006

Length of ICU stay, d, median (IQR) 18 (11–31) 16 (8–26) 0.006

Days from ICU admission to ARDS onset/diagnosis, median (IQR) 1 (0–3) 1 (0–2) 0.588

Days from last day mechanical ventilation to ICU discharge, median (IQR) 2 (0–5) 2 (0–6) 0.752

All-cause ICU mortality, n (%) 375 (37.5) 112 (37.0) 0.920

All-cause hospital mortality, n (%) 415 (41.5) 124 (40.9) 0.860

ARDS = acute respiratory distress syndrome, IQR = interquartile range.
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TABLE 2.
Univariate Logistic Regression of Clinically Relevant Variables in 1,000 Patients With 
Moderate-to-Severe Acute Respiratory Distress Syndrome

Variables n OR (95% CI) p 
Area Under the Receiving Operating 

Characteristic Curve (95% CI) 

Age 1,000 1.03 (1.02–1.04) 1.1 × 10−13 0.65 (0.61–0.68)

Gender 1,000 0.96 (0.73–1.3) 0.78 0.50 (0.47–0.53)

Cardiac disease 1,000 2.21 (1.37–3.61) 0.0013 0.53 (0.51–0.55)

Diabetes 1,000 1.23 (0.85–1.75) 0.26 0.51 (0.49–0.54)

Immunosuppressed 1,000 2.55 (1.68–3.92) 1.5 × 10−05 0.54 (0.52–0.56)

Morbid obesity 1,000 0.80 (0.50–1.28) 0.36 0.51 (0.49–0.53)

Liver disease 1,000 2.47 (1.41–4.38) 0.0016 0.52 (0.51–0.54)

Neoplastic disease 1,000 3.34 (2.43–4.62) 1.8 × 10−13 0.60 (0.57–0.63)

SOFA at T0 1,000 1.23 (1.18–1.29) 3.4 × 10−22 0.69 (0.65–0.72)

SOFA at T24 1,000 1.27 (1.22–1.32) 8.8 × 10−29 0.72 (0.69–0.75)

Vt at T0 1,000 1.03 (0.91–1.16) 0.68 0.50 (0.46–0.54)

Vt at T24 1,000 0.88 (0.76–1.01) 0.07 0.54 (0.50–0.57)

Fio2 at T0 1,000 1.52 (0.78–3.0) 0.22 0.52 (0.49–0.56)

Fio2 at T24 1,000 25.6 (12.3–54.11) 7.9 × 10−18 0.66 (0.62–0.69)

Respiratory rate at T0 1,000 1.01 (0.99–1.04) 0.30 0.51 (0.47–0.54)

Respiratory rate at T24 1,000 1.05 (1.03–1.08) 9.2 × 10−05 0.57 (0.54–0.61)

PEEP at T0 1,000 0.97 (0.94–1.01) 0.17 0.52 (0.49–0.56)

PEEP at T24 1,000 1.05 (1.0–1.10) 0.03 0.55 (0.52–0.59)

Plateau pressure at T0 1,000 1.06 (1.03–1.09) 5.4 × 10−05 0.57 (0.53–0.61)

Plateau pressure at T24 1,000 1.22 (1.18–1.26) 2.6 × 10−28 0.73 (0.70–0.77)

Driving pressure at T0 1,000 1.06 (1.03–1.09) 2.5 × 10−05 0.58 (0.54–0.61)

Driving pressure at T24 1,000 1.18 (1.15–1.23) 1.7 × 10−23 0.70 (0.67–0.73)

Minute ventilation at T0 1,000 1.01 (0.95–1.07) 0.83 0.49 (0.46–0.53)

Minute ventilation at T24 1,000 1.05 (0.99–1.11) 0.10 0.53 (0.49–0.56)

Pao2 at T0 1,000 0.99 (0.99–1.0) 0.005 0.56 (0.52–0.59)

Pao2 at T24 1,000 0.98 (0.98–0.99) 3.7 × 10−10 0.64 (0.60–0.67)

Pao2/Fio2 at T0 1,000 1.0 (0.99–1.0) 0.006 0.55 (0.52–0.59)

Pao2/Fio2 at T24 1,000 0.99 (0.98–0.99) 2.9 × 10−20 0.69 (0.66–0.73)

Paco2 at T0 1,000 1.01 (1.0–1.02) 0.012 0.54 (0.51–0.58)

Paco2 at T24 1,000 1.03 (1.02–1.05) 2.4 × 10−07 0.59 (0.55–0.63)

pH at T0 1,000 0.10 (0.03–0.32) 0.00011 0.56 (0.53–0.60)

pH at T24 1,000 0 (0–0.01) 3.2 × 10−16 0.64 (0.61–0.68)

Number of extrapulmonary 
OF at T0

1,000 2.1 (1.84–2.41) 2.0 × 10−26 0.70 (0.67–0.73)

Number of extrapulmonary 
OF at T24

1,000 2.31 (2.03–2.66) 9.4 × 10−34 0.73 (0.70–0.76)

OF = organ failure, OR = odds ratio, PEEP = positive end-expiratory pressure, SOFA = Sequential Organ Failure Assessment, T0 = 
at the time of moderate/severe acute respiratory distress syndrome diagnosis, T24 = at 24 hr after moderate/severe acute respiratory 
distress syndrome diagnosis, Vt = tidal volume.
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the first 24 hours of moderate/severe ARDS diagnosis: 
20 variables had a significant univariate prognostic re-
lation with ICU death and 12 variables had an AUC 
greater than or equal to 0.6 (Table 2). These variables 
included some factors that could be influenced by clin-
ical interventions such as number of extrapulmonary 
OF, SOFA score, oxygenation, and Pplat, all of them 
measured at 24 hours.

In the multivariable logistic regression analysis, few 
characteristics associated with mortality in the univar-
iate analysis remained statistically significant (Table 
S2, http://links.lww.com/CCM/H413). The perfor-
mance of the model with all 34 variables (full model, 
including all variables, Fig. S2, http://links.lww.com/
CCM/H413) had a cross-validated AUC of 0.88 (95% 
CI, 0.86–0.90) (Table S2, http://links.lww.com/CCM/
H413), but most variables were correlated (Table S3, 
http://links.lww.com/CCM/H413). When applying 
the genetic algorithm for variable selection using op-
timization of AIC, the resulting model included 15 
variables (15-variable model, Table S4 and Fig. S2, 
http://links.lww.com/CCM/H413). The performance 
of 15-variable model had an AUC of 0.88 (95% CI, 
0.86–0.90) (Table S5, http://links.lww.com/CCM/
H413). When the genetic algorithm for subset selec-
tion optimized BIC, the resulting model reduced the 

number of predictors from 34 to 7 variables (seven-
variable model, Table 3; and Fig. S2, http://links.lww.
com/CCM/H413), with an AUC of 0.87 (95% CI, 0.85–
0.90) (Table S6, http://links.lww.com/CCM/H413). 
The seven variables showing strong relations with ICU 
mortality were: age, Pplat at 24 hours, Pao2/Fio2 at 24 
hours, number of extrapulmonary OF at 24 hours, his-
tory of neoplastic disease, immunosuppression, and 
Pplat at baseline (Table S6, http://links.lww.com/CCM/
H413). Of note, the first four variables of that model 
characterized the SPIRES score (4) with an AUC of 
0.86 (95% CI, 0.84–0.89) (Table S7, http://links.lww.
com/CCM/H413). When comparing 15-variable and 
seven-variable models with the SPIRES scoring model, 
there were no significant differences in their perfor-
mance (15-variable model vs SPIRES; p = 0.060 and 
seven-variable model vs SPIRES; p = 0.30) (Table S8 
and Fig. S3, http://links.lww.com/CCM/H413). The 
four variables of the SPIRES score had the higher im-
portance in the seven-variable model (Fig. S4, http://
links.lww.com/CCM/H413).

Validated performance using XGBoost and RF was 
similar to performance by logistic regression (AUC, 
0.86; 95% CI, 0.81–90 vs AUC, 0.87; 95% CI, 0.82–0.91 
vs AUC, 0.87; 95% CI, 0.82–0.91, respectively) (Table 
S9, http://links.lww.com/CCM/H413). The external 

TABLE 3.
Performance of a Logistic Regression Model of Predicting ICU Mortality (Seven-Variable 
Model) Within 24 Hours of Diagnosis of Moderate-to-Severe Acute Respiratory Distress 
Syndrome Using Logistic Regression Analysis and Minimizing the Bayesian Information 
Criterion

Variable b se OR (95% CI) p 

Intercept –8.25 0.88 0 (0–0.001) < 0.001

Age 0.05 0.01 1.048 (1.036–1.060) < 0.001

Immunosuppressed 1.09 0.29 2.986 (1.685–5.341) < 0.001

Neoplastic disease 1.13 0.21 3.093 (2.059–4.682) < 0.001

Plateau pressure at the time of diagnosis/onset of  
moderate/severe acute respiratory distress syndrome

–0.08 0.02 0.920 (0.879–0.962) < 0.001

Plateau pressure at T24 0.25 0.03 1.278 (1.212–1.351) < 0.001

Pao2/Fio2 at T24 –0.01 0 0.991 (0.988–0.994) < 0.001

Number of extrapulmonary OF at T24 0.82 0.08 2.276 (1.938–2.694) < 0.001

Akaike information criterion 869.47

Bayesian information criterion 908.73

Area under the receiving operating characteristic curve 0.87 (95% CI: 0.85–0.89)

OR = odds ratio, T24 = at 24 hr of diagnosis of moderate/severe acute respiratory distress syndrome.
This model reduced the number of relevant variables from 34 to 7. Data are expressed as mean values of logistic coefficients.

D
ow

nloaded from
 http://journals.lw

w
.com

/ccm
journal by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

y
w

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 11/17/2023

http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413


Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

Feature Articles

Critical Care Medicine	 www.ccmjournal.org          1645

validation cohort (n = 303) had baseline characteris-
tics and ICU mortality (112 deaths, 37%) similar to 
1,000 patients for model development (Table  1). The 
POSTCARDS models as optimized by the two ML 
techniques provided similar performance to the one 
derived by logistic regression (AUC, 0.91; 95% CI, 
0.87–0.94) (Table S10, http://links.lww.com/CCM/
H413). Calibration results suggest good reliability of 
predictions, with logistic regression best overall (Fig. 
S5, http://links.lww.com/CCM/H413).

DISCUSSION

We found that prediction models of ICU mortality de-
veloped by ML methods provided similar discriminative 
ability and calibration to regression approaches and to 
the parsimonious SPIRES score, when applied to datasets 
of moderate-to-severe ARDS patients. Seven character-
istics (age, history of cancer, history of immunosuppres-
sion, baseline Pplat, and Pplat at 24 hr, Pao2/Fio2 at 24 hr, 
and number of extrapulmonary OF at 24 hr) contained 
most of the prognostic information for ICU death within 
the first 24 hours after diagnosis of moderate/severe 
ARDS. The validity of the POSTCARDS model was con-
firmed in a contemporary external validation cohort.

It has been known for decades that ICU outcome is 
worse with higher age (38); comorbidities have a no-
table impact on ARDS survival (39); patients with se-
vere lung damage have lower Pao2/Fio2 (19); there is a 
direct relationship between Pplat and mortality (40); 
and the greater the number of extrapulmonary OFs the 
higher the mortality (41). We have previously shown 
that restricting ARDS severity to the hypoxemia level 
could lead to discrepancies in outcome prediction (3, 
4). Since baseline Pao2/Fio2 is impacted by clinician-
set ventilatory strategies (3, 4, 42), an important fea-
ture of our work is that the oxygenation parameters 
included in our models were obtained using standard-
ized ventilatory settings after a 24-hour stabilization 
period (3, 9, 19, 24).

Most clinical trials in ARDS tested the effectiveness 
of therapies in populations with highly variable base-
line characteristics and lack of assessment of the pro-
gression of modifiable clinical features (43, 44). It is 
unsurprising, that a recent systematic review has found 
significant unexplained heterogeneity in the 28-day 
mortality of control groups (44). Our findings em-
phasize the importance of standardized assessment of 

ventilation following the initial diagnosis of ARDS. Two 
out of the four modifiable clinical variables responsible 
for the predictive power of our POSTCARDS model 
were recorded during these standardized MV settings. 
In our study, which focused on prognostic, risk features 
did not identify which patients are likely to respond to 
any specific treatment. More research is needed to iden-
tify predictive variables that are modifiable (10).

A novel finding of our study is that two different 
ML techniques were not able to outperform logistic 
regression or the previously developed SPIRES scor-
ing system. While prediction modeling is one of the 
most common ML applications, we should be real-
istic on the role of ML in this clinical domain (45). 
Previous efforts to improve generalizable predictive 
models have been hampered by lack of standardized 
datasets obtained from heterogeneous populations 
(1, 4, 19, 44, 46). Regardless of which tool we chose 
to predict ARDS outcome, it must be assessed under 
precise standardized conditions (46) to make clin-
ical decisions and actions replicable (47). We have 
addressed this problem by ensuring that the ML algo-
rithms started from a comparable disease severity state 
across all patient cohorts. Interestingly, we found that 
the SPIRES score (4), a simple scoring system with 
high explanatory predictive power, can predict ICU 
death in moderate/severe ARDS with a parsimonious 
four-variable model. Although critical care physicians 
must deal with about 200 variables when caring for an 
ARDS patient (48), human working memory is limited 
to 4 ± 1 constructs (49) with a degradation in clinical 
decision-making once the limit of four constructs is 
exceeded (48, 49).

We recognize that the major focus of clinicians is 
not the prediction of outcomes in individual patients 
using population level data. As suggested by experts in 
the field of critical illness, we believe that the current 
ARDS-based framework of illness should be reconsid-
ered (10). Clinicians are interested in actionable and 
modifiable variables for improving expected outcomes 
(10). Based on our findings, the following are reason-
able targets within the first 24 hours of ARDS man-
agement: improving the oxygenation to achieve Pao2/
Fio2 greater than 150 mm Hg, reducing the lung strain 
by using Pplat less than 29 cm H2O, and aiming to re-
duce the number of extrapulmonary OFs. Targeting 
these variables have high external validity as it has 
been shown that improving oxygenation and limiting 

D
ow

nloaded from
 http://journals.lw

w
.com

/ccm
journal by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

y
w

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 11/17/2023

http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413
http://links.lww.com/CCM/H413


Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

Villar et al

1646          www.ccmjournal.org	 December 2023 • Volume 51 • Number 12

lung-stress with early interventions such as prone 
positioning can decrease mortality (50). The presence 
of extrapulmonary OF has also been highlighted by 
others as a significant risk variable (51). However, the 
best strategies to achieve improvement of nonpulmo-
nary OF in ARDS has not been elucidated and should 
be subject to further research.

Our study has a several strengths. First, our predic-
tion model was developed from a large patient popu-
lation that reflects current clinical practice for patients 
with moderate/severe ARDS. Second, ML methods 
that incorporate prior clinical knowledge satisfying 
face validity, have the benefit of leading to interpreta-
tions that are more relevant, and less likely to generate 
unreasonable predictions (52). Third, our models pro-
vided good fit to the various datasets obtained from the 
multicenter studies, further increasing generalizability.

We acknowledge some limitations. First, the 
POSTCARDS prediction model was developed using 
data from patients managed with lung-protective 
ventilation, and hence may not be valid for patients 
ventilated with large Vt or high Pplat. Second, some 
overfitting may have occurred because the initial 
number of candidate variables was 34, but our variable 
selection method is based on a survival of the fittest 
approach to modeling data. Using genetic algorithm-
based modeling has been shown to perform better than 
other advanced variable selection methods in large 
ICU datasets (53). Third, we considered only a limited 
number of ML methods; other approaches may lead 
to better prediction models. Finally, our model needs 
further validation beyond our current cross-validation 
and external validation approach.

In summary, ML models may not provide advan-
tages over regression models or simple scores for pre-
dicting ICU death in patients with moderate-to-severe 
ARDS. Clinical determinants of ICU death in ARDS 
are multifactorial. Our study clarifies that biology, as 
represented by a limited number of key characteristics, 
is key to prediction rather than the specific learning 
method (classic regression or ML). Demographics, 
comorbidities, and potentially modifiable variables 
such as lung mechanics, oxygenation, and extrapul-
monary OF may predict outcome. Even if prediction 
models are highly accurate, they are unlikely to im-
prove clinical outcomes unless they are linked to effec-
tive interventions, and recommendations or actions are 
integrated into ARDS management. Future research 

should address precision medicine in ARDS, invoking 
the concept of treatable traits (10), specific physiologic 
derangements that portend a response to a particular 
intervention.
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